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Abstract

We examine the in¯uence of object shape on strain, taking the example of an elliptical object in a matrix of different viscosity. The

Eshelby±Bilby equation for the cross-sectional strain of circular cylindrical objects in a matrix of different viscosity is differentiated, to

express the relationship of developing sectional ellipticity on incremental strain. This leads to an expression for the strain of initial elliptical

objects whose axes are parallel or perpendicular to pure shearing. Graphs show that competent elliptical objects with axial ratios of Ri� 3 or

more, will strain signi®cantly more than circular objects of the same viscosity; less if the objects are incompetent. While the effect is likely to

be insigni®cant for competent objects with initial ellipticity of ,2, which is indicated from statistics for undeformed pebbles in

conglomerates, any clast with greater ellipticity, such as Ri� 5 to 10, could deform signi®cantly more than an equant clast, and thus appear

to be materially less competent. These principles have implications for geological strain studies and for competence contrasts in rocks.

q 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Since the beginnings of structural geology, researchers

have recognised that different rock types deform to greater

or lesser extents. These rheological differences are

commonly referred to as competence contrasts, and are

considered to control the deformation variations and struc-

tures in rocks, whether layered or aggregate. We investigate

an aspect of deformation variation that is relevant to

deformed clast±matrix rocks with competence contrasts,

such as conglomerates. Gay (1968a,b) presented the ®rst

comprehensive modelling of these kinds of rocks, by

investigating the deformation of a single isolated spherical

or circular object in a matrix of different viscosity. Eshelby

(1957), Gay (1968a) and Bilby et al. (1975) presented

theoretical analyses to show that isolated circular-sectioned

objects in an in®nite matrix of contrasting properties will

deform by a strain that is not equal to the far-®eld strain.

This has important applications for rocks such as con-

glomerates, as the theory provides a possible means of

determining viscosity ratios among different rock types

(Gay, 1968b; Gay and Fripp, 1976; Lisle et al., 1983).

The deformation of non-elliptical objects in a matrix has

been recently investigated by Treagus et al. (1996) and

Treagus and Lan (2000), using two-dimensional ®nite-

element analysis of variably oriented square objects in a

contrasting viscous matrix. This work revealed the impor-

tant difference between elliptical and non-elliptical objects.

Elliptical objects deform homogeneously, maintaining

elliptical forms, despite the strongly heterogenous matrix

strain surrounding objects with a high viscosity contrast

(Shimamoto, 1975). However, non-elliptical objects,

especially angular objects of various kinds, generally

deform inhomogeneously into irregular shapes according

to viscosity contrast and orientation. For example, square

competent objects parallel to pure shearing deform to barrel

shapes, undergoing a greater overall strain than an

equivalent circular object (Treagus and Lan, 2000).

What may be less obvious from object±matrix theory for

circular to elliptical objects, cited above, are the inter-

relationships of object strain and ellipticity: the purpose of

this contribution. We will concentrate on single objects in a

matrix, in a two-dimensional analysis, but the ®ndings are

likely to be important to the sectional history of ellipsoidal

objects in three-dimensional deformation, such as the clasts

in a deforming conglomerate or diamictite.

2. Pure shear of a circular object in a contrasting matrix

The Eshelby±Bilby expression for the cross-sectional
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deformation of a circular cylindrical inclusion (object) in an

in®nite matrix, in pure shear deformation and slow incom-

pressible viscous ¯ow, written in familiar strain nomencla-

ture (Bilby et al., 1975; Lisle, 1985) is:

lnRs � lnRo 1 {�m 2 1��Ro 2 1�=�Ro 1 1�}: �1�

The treatment is two-dimensional, and assumes

adherence and continuity at the object±matrix interface.

RS is the strain ratio for the bulk far-®eld strain (strain ellipse

axial ratio), RO is the axial ratio of an elliptical, initially

circular, object (equivalent to the object strain ratio), and

m is the viscosity ratio of object to matrix (assuming

Newtonian behaviour). Fig. 1 represents this equation

graphically, for a range of m values, and up to bulk strain

ratios of 10, which might be considered a reasonable upper

limit for geological strain achieved by pure shear (i.e.

,70% shortening). The curves for competent objects

(m . 1) in Fig. 1 appear to be almost linear, although

Eq. (1) is not an exact linear function of ln RO versus ln RS.

The expression derived by Gay (1968a) was

lnRo � {5=�2m 1 3�}lnRs �2�

which is a true linear relationship of ln RO to ln RS. For the

value ranges shown in Fig. 1, especially for competent

objects (m . 1), this equation is found to be a good approxi-

mation to Eq. (1), but Gay's two-dimensional analysis is not

considered strictly correct (see discussions: Bilby et al.,

1975; Gay, 1976; Bilby et al., 1976). A linear relationship

of this kind would mean that the developing object ellipti-

city did not affect the object strain path. Whether this can be

assumed, absolutely or approximately, is the topic of this

contribution. To answer this, it is instructive to consider

Eq. (1) and its graphical representation in more detail, and

over a wider range of R values than shown in Fig. 1.

Fig. 2 shows values of the Eshelby±Bilby expression

(Eq. (1)) over many more orders of magnitude. It illustrates

a rather narrow region of strain values for incompetent

objects, between the diagonal (m� 1) and the limiting

incompetence curve of m� 0, and these curves approach

subparallelism to the diagonal at high RO. In contrast, the

competent (m . 1) object strains occupy the complete range

from the graph diagonal to the abcissa which represents zero

strain and thus pseudo-rigidity (here for m $ 50). These
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Fig. 1. Graphical representation of the Eshelby±Bilby equation (Eq. (1)),

relating the strain and axial ratio (RO) of circular to elliptical objects in a

matrix, to the bulk strain ratio (RS), on logarithmic scales. The curves show

different viscosity ratios (m) of object/matrix, as numbered.

Fig. 2. Graphical representation of the Eshelby±Bilby equation (Eq. (1)), as Fig. 1, but shown over many more orders of strain magnitude. See text for further

discussion, and reference to points A, B and C.



m . 1 curves are virtually linear from the origin up to

RO < 3, suggesting that ellipticities of , 3 have an insignif-

icant effect on the incremental object strain. Increasing non-

linearity and steepening gradients occur at higher values of

RO, and are especially notable in Fig. 2 for m� 5 and 10,

recording the role that increasing ellipticity has on object

strain. Would this effect be seen for m� 20 and 50, if even

more cycles of bulk strain were shown? (Disregard, for the

present, what the meaning is of such enormous `strains'.)

The answer is yes, but rather than demonstrate it by even

wider graphs, it is better shown by de®ning the gradient

functions for the different m curves.

2.1. Gradient function, F

The gradients of curves of ln RO versus ln RS graphs (e.g.

Fig. 1) are given by differentiation of Eq. (1) with respect to

ln RO:

d�lnRO� � d�lnRS�{�RO 1 1�2=�R2
O 1 2mRO 1 1�}: �3�

Denoting the gradient function, d(ln RO)/d(ln RS), as F, we

have:

F � �RO 1 1�2=�R2
O 1 2mRO 1 1�: �4�

Note that this is a function of two variables: the viscosity

ratio, m, and the instantaneous object axial ratio, RO. When

values of RO are substituted, this reduces to a function of m,

expressing the gradients of curves in Fig. 1, where they

cross a particular RO parallel.

For example, at the origin of Figs. 1 and 2, RO� 1, and so

F � 2=�m 1 1� �5�
leading to:

lnRO � {2=�m 1 1�}lnRS: �6�
This is the in®nitesimal strain relationship for pure shear

of circular objects (Bilby et al., 1975, eq. 19). It is a linear

function for ln R, and expresses the gradients of straight

lines radiating from the origin of Fig. 1 or Fig. 2, in terms

of their viscosity ratio, m.

For RO� 5, the F function (Eq. (4)) becomes

F � 3:6=�m 1 2:6�; lnRO � {3:6=�m 1 2:6�}lnRS: �7�
For RO� 10, we have

F ù 6=�m 1 5�; lnRO ù {6=�m 1 5�}lnRS: �8�
Note that these F expressions can thus all be written in the

form:

F � {�1 1 p�=�m 1 p�} �9�
where p might be termed a shape variable. In the present

case, p is related to the instantaneous value of the develop-

ing ellipse axial ratio for initially circular objects, and can

be expressed (from Eq. (4)):

p � �R2
O 1 1�=2RO: �10�

The variable, p, is found in related work to be a useful

`shape variable' for other object shapes, such as the

`squares' modelled by Treagus and Lan (2000). Its role in

the rheological behaviour of object±matrix mixtures will be

pursued in a fuller analysis elsewhere. Here, we are

concerned only with ellipses. Using Eq. (10), it is found

that p� 1 when RO� 1 (the circular objects represented at

the origin of Figs. 1 and 2). For RO� 5, p� 2.6; for

RO� 10, p ù 5.

This approach, in terms of F and p variables, leads us to a

method of using Eq. (1) and its graphical representation

(Fig. 2) for the cross-sectional deformation of initially

elliptical cylindrical objects.

3. Pure shear of an elliptical object in a contrasting
matrix

Eq. (1), after Bilby et al. (1975), is an explicit two-

dimensional relationship of object and bulk strain and

viscosity ratio, for pure shear of an initial circular cylindri-

cal object. A comparable expression was not explicitly

provided by these authors, for initial elliptical cylindrical

objects. The deformation of elliptical objects with initial

axial ratio (Ri), orientation (u) and viscosity ratio (m),

requires integration of a more complex expression (see

Bilby and Kolbuszewski, 1977; Lisle et al., 1983; Lisle,

1985) that will not be given here. However, there is a way

that Eq. (1) and Fig. 2 can be used, if we restrict our con-

sideration to elliptical objects aligned parallel or perpen-

dicular to pure shear axes.

Fig. 2 represents the progressive strain and shape change

of circular objects to elliptical, in pure shear. For example,

consider points A and B, on the m� 5 curve. At A, RO� 2,

and RS� 7.6; at B, RO� 4, and RS� 44.1. Thus the strain

increment from A to B is an object strain of RO� 4 4 2� 2,

and a bulk strain of RS� 44.1 4 7.6� 5.8. (This can be

measured additively on Fig. 2, because of its logarithmic

axes.) The example demonstrates that it takes less bulk

strain to achieve the second (equal) increment of object

strain, than the ®rst, as the upward-steepening m� 5

curve also shows. These curves can therefore also be used

to track the deformation of initial elliptical objects with

viscosity contrasts. For example, an elliptical object with

Ri� 2 (with long axes parallel to the extension direction

of pure shear), and viscosity ratio of 5, would begin at

point A in Fig. 2, and would deform up the curve to B or

C or beyond.

The theory on which Eq. (1) and Fig. 2 is based involves

linear viscous incompressible ¯uids in slow ¯ows. Although

the matrix stress and strain states surrounding circular/

elliptical objects must be inhomogeneous, because of the

viscosity contrast, these objects all deform homogeneously

whatever the viscosity ratio. Since there is no `memory'

involved in the deformation process, the only controls on

the strain for elliptical objects aligned parallel to bulk strain

axes are the ellipticity and viscosity contrast. This is also
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apparent from the gradient function, F (Eq. (4)). For this

reason, we propose that Fig. 2 can be used with any R

starting point to determine what happens to any elliptical

object with its long axis parallel to pure shear extension. For

example, A ! B (Fig. 2) represents a change from an

object with Ri� 2 to R� 4 (i.e. a true object strain of

RO� 2), and requires a bulk strain increment of RS� 5.8.

The graph is also reversible. Thus B ! A can represent a

`backwards deformation' of an initial object with Ri� 4,

which represents deformation (with RS� 5.8) of an object

that has its long axis perpendicular to pure shear extension

(i.e. the object reduces its ellipticity to R� 2).

Fig. 2 can thus be used to compute pure shear deforma-

tion for any elliptical object that is aligned parallel/perpen-

dicular to the strain axes. The starting points on Fig. 2 are

only at the origin for initial circular objects; for any other

ellipse shape we start at the appropriate ordinate Ri value on

the required m-value curve. For example, for Ri� 10 and

m� 5, the curve `begins' at point C on Fig. 2. We move

up-curve for pure shear of an object whose initial long axis

is parallel to the extension; down-curve if the long axis is in

the shortening direction. (If this is confusing, a double

diagram may be used, as shown later.)

Applying this principle mathematically, we write the

`starting position' as an imaginary bulk strain, RS1, after

Eq. (1):

lnRS1 � lnRi 1 {�m 2 1��Ri 2 1�=�Ri 1 1�}: �11�
A second equation expresses the `®nal position' as

imaginary bulk strain, RS2, in terms of the ®nal object

axial ratio Rf:

lnRS2 � lnRf 1 {�m 2 1��Rf 2 1�=�Rf 1 1�}: �12�
The real strain is the `difference' between these two

states: the true bulk strain, RS� RS2/RS1, and the object strain

RO� Rf/Ri. From Eq. (11) and Eq. (12), we ®nd:

lnRS � lnRO 1 �m 2 1�{�RORi 2 1�=�RORi 1 1�
2 �Ri 2 1�=�Ri 1 1�}: �13�

This is the pure shear deformation of an initially elliptical

object that is parallel or perpendicular to pure shearing.

Eq. (13) is similar to Eq. (1), but with an extra expression

in curly brackets that de®nes initial ellipticity, Ri. (Ri .1, for

objects with long axes parallel to the pure shear extension;

Ri , 1, in the perpendicular orientation.) From the earlier

discussion of Fig. 2, the effect of initial ellipticity on object

strain would be expected to be slight, for only moderately

elliptical objects (e.g. Ri , 3). What happens for more
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Fig. 3. Graphical representation of Eq. (13), a modi®cation of the Eshelby±Bilby equation for the pure shear of initially elliptical objects with (a) Ri� 5 and (b)

Ri� 10. Other terms and de®nitions as Fig. 1.



strongly elliptical objects will be examined next, using

examples of Ri� 5 and 10.

3.1. Examples: pure shear of objects with Ri� 5 or 10

For elliptical objects with Ri� 5, Eq. (13) reduces to:

lnRS � lnRO 1 �m 2 1�{�5RO 2 1�=�5RO 1 1�2 0:67}:

�14�
This is graphed in Fig. 3(a), and shows the slopes of

different m-curves for these initial elliptical objects.

Comparison with Fig. 2 shows that these Ri� 5 objects all

deform with weaker ductility or competence contrasts than

circular objects with equivalent viscosity. The effect is

noticeable for the whole m range. For incompetent objects,

only the m� 0 curve is shown, and this has moved signi®-

cantly closer to the m� 1 diagonal, below the position for

m� 0.5 in Fig. 2. Likewise, all the m . 1 curves have

moved towards the diagonal, relative to Fig. 2, in positions

which, for circular objects, would relate to about half these

numbered viscosity ratios.

The second example shows even more elongate elliptical

objects, Ri� 10. Eq. (13) reduces to:

lnRS � lnRO 1 �m 2 1�{�10RO 2 1�=�10RO 1 1�2 0:8}

�15�
which is graphed in Fig. 3(b). Note the m-curves show

weaker competence contrasts, again, compared to both

Fig. 2 and Fig. 3(a). Even the m� 0 curve, that might be

loosely described as a `maximum incompetence', is only

mildly different from the diagonal line, indicating almost

homogenous straining. This is an important result, because

it suggests that strongly elongate supposedly incompetent

objects, whether originally elongate, or elongated through

deformation, will undergo a deformation progressively

approaching that of the matrix.

In rocks such as conglomerates, the clasts are usually of

rocks that are considered to be more competent than the

matrix and whole rock, and so examples with m . 1 are

especially relevant. The effects shown in Fig. 3(b) for

Ri� 10 and m . 1 are stronger than those shown in Fig.

3(a) for Ri� 5. A rough comparison with Fig. 2 shows

that the m curves for Ri� 10 objects have approximately

the same slope as those for circular objects with several

factors smaller m-value. Importantly, it is demonstrated

that the ellipses with viscosity ratios of 50 or 100, which

if circular would be deemed `rigid', deform as if their

viscosity contrasts were considerably less. This is another

important conclusion that is expected to have a bearing on

how rock mixtures with strongly inequant clasts might

deform.

The effect of shape on reducing the deformation and

competence contrasts, as shown in Fig. 3, can be investi-

gated another way. Referring back to Eq. (4) to (9), these

express the mutual relationships among gradient, shape and

viscosity. We can de®ne m 0 as the viscosity ratio of circular

objects (Eq. (5)) that strain on the same paths as those shown

for the elliptical objects considered here (Ri� 5 or 10). It is

found that competent objects with Ri� 5 have m 0 given by:

m0 � �m 1 0:8�=1:8 �16�
which is almost half the real m value, as stated earlier.

Competent objects with Ri� 10 would have m 0 given by:

m0 � �m 1 2�=3: �17�
This expression again emphasises that the high m values

that give rise to pseudo-rigidity in circular objects, convert

to weaker competence contrasts for these high values of

initial ellipticity.

It should be noted that Fig. 3 can also be produced

manually from Fig. 2, by tracing all the m-curves from

their R� 5 or 10 ordinate positions onwards (upwards)

and presenting them in equivalent form (with abcissa-origin

starting points). This can be done for other R values, too.

However, the equations used above (Eqs. (14) and (15))

allow the curves and strains to be de®ned more precisely.

4. Ellipse object strain map

Rather than drawing many series of graphs of strained

elliptical objects with different initial ellipticity (Ri) of the

kind shown in Fig. 3, or using Fig. 2 in both `forward' or

`backward' mode as explained earlier, which may be

confusing, a special double graph can be used to illustrate

the deformation of elliptical objects of a particular viscosity

ratio in the two permissible orientations. Fig. 4 is an

example for `competent' elliptical objects in a matrix,

with m� 5, and incompetent objects with m� 0.1. These

are probably reasonable numerical values to assume for

rocks (Treagus, 1999). Comparing this graph to Fig. 2, the

(1, 1) point is the `origin' for circular objects, so is marked

by the circle. Elliptical objects parallel to the extension are

shown in the upper-right graph, with the Ri� 10 positions

shown by schematic ellipses. Elliptical objects perpendicu-

lar to the extension are now shown in the lower-left region,

with the Ri� 0.1 positions shown by the ellipses on the

lowest axis. The graph squares are R� 10 strain cycles. In

this double graph, all deformation follows paths to the right

and upwards. A graph on this scale is not proposed for exact

calculations, but it illustrates how the gradients of strain

paths for nominally competent and incompetent objects

change, with initial or developing object ellipticity.

5. Ellipsoids and three dimensions

The foregoing analysis of the effect of object shape on

strain has been two-dimensional, based on the theory of

deformation for cross-sections of circular or elliptical

cylinders in a matrix (Bilby et al., 1975). A full theoretical

treatment for the pure shear deformation of spherical to

ellipsoidal inclusions in a matrix of a different viscosity is
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given by Freeman (1987), developed from Eshelby's (1957)

equations. Signi®cantly, Freeman demonstrated through

graphical methods, including ªtransformed Flinn plotsº,

that in a plane-strain pure-shear deformation, a spherical

competent object would not deform in plane strain because

of differential area strain in the principal X±Z section. The

object would become prolate to some degree, depending on

the viscosity contrast. Conversely, an incompetent spherical

object will deform to an oblate ellipsoid. Freeman and Lisle

(1987) expanded the results, and considered their applica-

tions to conglomerates and geological strain analysis.

Freeman's (1987) three-dimensional analysis depended

on numerical solutions of integrals, at successive increments

of deformation, and did not lead to direct algebraic solutions

for object versus bulk strain, of the kind given here for two

dimensions (Eq. (1)). Consequently, the differences in strain

values obtained between the two-dimensional and three-

dimensional analyses cannot be expressed algebraically.

We have attempted a calculation from graphical informa-

tion, by comparing the object and bulk strain ratios for the

X-Z principal sections of object ellipsoids determined from

Freeman's (1987) analysis and transformed Flinn plots

(a/b £ b/c), with the ellipse values given by two-

dimensional analysis (Fig. 1, Eq. (1)), restricting the

comparison to bulk plane-strain pure shear (X/Z) of RS #
7.4 (# 63% shortening). The ellipse axial-ratios for m� 2

to 10 are found to underestimate the ellipsoid X±Z ratio by

up to 10%, but appear rather insensitive to m. For bulk

strains of RS� 4, the underestimate is closer to 5%.

Although these values also include errors of manual

measurement, we think they are small enough to justify

using the two-dimensional cylinder model, and its explicit

and simpler mathematics, as an approximation for the

sectional deformation of spherical to ellipsoidal objects in

plane strain, to geologically reasonable bulk strain values.

This allows conclusions to be drawn on the effect of initial

ellipsoidal shape on object strain. As for two dimensions,

the method can only be used for ellipsoidal objects aligned

with pure shear axes: in this case, the deformation of initial

plane-strain ellipsoids with longest and shortest axes

parallel to X or Z of pure shear, viewed in X±Z section.

6. Discussion and conclusions for rocks

We have developed a method of extending two-

dimensional theory for the viscous deformation of isolated

circular objects in a contrasting matrix in pure shear, to

objects that were initially elliptical, with axes parallel to

pure shear axes. Examples and graphs show that objects

that were initially strongly elliptical deform with a smaller

ductility contrast to the bulk strain than circular objects. For

competent (m . 1) objects, this means that ellipticity

increases the object's ductility, with two effects. (1) An

initially elliptical object aligned in pure shearing will strain

more than a circular object. At the extreme, an equant object

might appear rigid and undeformed, while a strongly

elliptical one of the same material could undergo measur-

able deformation. (2) As a competent object deforms and

becomes more elliptical, it will progressively strain more,

becoming increasingly ductile and apparently less

competent.

For isolated incompetent (m , 1) objects, which by de®-

nition deform more than the bulk strain, the process works

in the opposite sense: equant ones will deform the most,

elongate ones the least. The range of object straining is
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Fig. 4. Ellipse object strain map for two examples of viscosity ratio: m� 5 (bold curve) and 0.1 (broken curve). The diagonal shows passive behaviour (m� 1).

The elliptical shapes (RO� 10 and 0.1) are approximate representations, showing how this graph can be used to track the strain history of elliptical objects

parallel or perpendicular to pure shear.



quite restricted, however, bounded by m� 1 and the `upper'

limit of m� 0 (Fig. 2), a maximum factor in lnR of only 2.

Initial or increasing ellipticity serves to narrow this range,

reducing the ductility contrast to the matrix. Objects with

axial ratios of 10 will behave as effectively passive strain

markers, and might therefore not be interpreted as

`incompetent' at all, according to normal terms of reference.

We have argued that the two-dimensional theory, i.e. the

sectional deformation of a circular/elliptical cylinder, can be

extended to three dimensions, as an approximation to the

plane strain deformation of a spherical/ellipsoidal object.

The small amount of non-plane straining that changes

competent and incompetent spherical objects into mildly

prolate or oblate ellipsoids, respectively, will affect the

accuracy of quantitative strain analysis, but probably by

less than ^10%. We therefore consider it justi®ed to draw

some conclusions for the comparative deformation of

spherical and ellipsoidal objects, viewed in the X±Z sections

of plane pure shear.

The results for isolated objects in an in®nite matrix might

reasonably be assumed to apply to widely spaced objects, or

weak suspensions of spherical/ellipsoidal objects in a

matrix, such as clasts in a diamictite. Can they be applied

to more closely spaced objects, such as clasts in con-

glomerates? In earlier discussion, Treagus et al. (1996)

suggested that the ®nite element models of Shimamoto

(1975), showing the patterns of strain in and around

deformed circular objects, indicate that objects with centres

spaced more than twice their diameters apart did not

in¯uence each other. This would therefore suggest that

any clast±matrix mixture where the clasts have at least

`one object space' separating them may be approximated

by the `isolated object' modelling presented here, rendering

it applicable to rocks with closer-spaced clasts, such as some

conglomerates. We therefore follow with some discussion

of deformed conglomerates, and the implications if such

rocks are used in strain analysis.

If a rock contains a population of initially elongate clasts

in a matrix, our analysis suggests that these should deform

more uniformly with the matrix than a population of equant

clasts, regardless of expected competence contrasts. For

many conglomerates, the clasts will be of a rock type that

is assumed to be more competent than the matrix; for

example sandstone or quartzite pebbles. If these clasts

have a range of initial ellipsoidal shapes, and the rock is

in pure shear, the most ellipsoidal clasts with long axes

parallel to the extension direction will deform the most;

subspherical clasts the least.

Intriguing questions arise, therefore, when a geologist is

faced with a deformed rock where some clasts are more

highly elongate than others. (1) Should it be assumed that

the most elongate clasts were initially most elongate, and

that all the clasts have deformed by approximately the same

strain? (2) Or have the most elongate clasts deformed the

most, because they have a different `competence'? The

answers would not be found from clast shape and strain

analysis alone, but might be indicated by the nature of defor-

mation fabrics in the clasts and surrounding matrix. Our

results suggest that both questions might be partly af®rma-

tive. The most elongate clasts in a population of competent

rock-type were probably initially the most elongate, but will

also have undergone the greatest strain.

This process in a population of competent clasts has the

effect of widening the range of clast ellipticities with

progressive deformation. In turn, this has implications for

methods of geological strain analysis that often use axial

ratios of competent clasts in conglomerates, such as the

Rf±f method (Ramsay and Huber, 1983, pp. 75±78). We

have insuf®cient data to assess the implications of this for all

the statistical methods of Rf±f analysis (Lisle, 1985).

Where there is a clast±matrix competence contrast, each

clast can potentially deform by a different strain. An

`average clast strain' could be calculated, as for the case

of passive ellipsoidal objects (Lisle, 1979; personal com-

munication, 2000), but the data range would now contain

more than mere statistical variations, so the differences

among arithmetic, geometric and harmonic means, or taking

square-root of Rf-max 4 Rf-min, require theoretical assessment.

However, statistics for undeformed conglomerates (Lisle,

1985, table 4.2) show that most clasts have initial ellipti-

cities in the range of Ri� 1.5 to 2. If treated as competent

objects, they would therefore deform only marginally more

(by up to a few%) than equivalent circular objects. It might

therefore be concluded that a population of mildly elliptical

clasts will undergo almost uniform straining, and can there-

fore be analysed by Rf±f methods given by Lisle (1985).

However, in any statistical sample there are likely to be

some clasts with much greater ellipticity, which according

to our ®ndings will have strained the most, and these would

distort the statistics and perhaps lead to overestimates of

average clast strain for competent objects.

Conglomerates or other rocks consisting of incompetent

clasts in a competent matrix are probably rather unusual.

Such a rock, if deformed, might appear almost homo-

geneously deformed, and thus a competence contrast

between clasts and matrix might not be apparent. A clast

Rf±f analysis would be expected to yield a concentrated

®eld of strain data, because any initial clast shape range

will be narrowed by the process of greatest deformation of

equant clasts, and least deformation of aligned elliptical

clasts.

If the interrelationships of clast shape and strain for pure

shear deformation, discussed here, are applicable to other

deformation histories, such as simple shear, they open up

the possibility of drawing wider conclusions about the

deformational behaviour of clast±matrix mixtures. For

example, P.D. Bons (personal communication, 2000)

suggests that this may provide an explanation for the

changing rheological behaviour of camphor/OCP mixtures

in simple shear experiments (Bons and Urai, 1996, ®g. 7).

The camphor inclusions behaved as a `hard' material, until

they became more and more elongate, then apparently
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yielded and behaved as layers. We aim to present a fuller

investigation of the effects of clast shape on the bulk

rheology of clast±matrix mixtures in a subsequent paper.
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